
Drag & Drop Is Easy...
by Stuart Lunn

How to enable your application to become a client of Windows
File Manager (and how to hook into the Windows Message
Loop at the same time)

If an application has been made a
client of Windows File Manager,

you can drag a file from File
Manager and drop it onto the appli-
cation, just as you can move and
copy files within File Manager by
dragging them from one place to
another. For example, if you drag a
text file called TEMP.TXT from File
Manager and drop it on the Delphi
code editor the file will be opened
with the name TEMP.TXT on the
code page window tab (a very
useful feature which I discovered
by accident!). Incidentally, you will
know if an application can accept
dropped files because the cursor
will change from the No Stopping
sign to one of the document drop
symbols.

While Delphi makes it easy to
implement drag and drop between
components, it does not automat-
ically enable your application as a
client of File Manager. But with a
simple API call and capture of the
Windows WM_DROPFILES message
you can easily enable your applica-
tion as a drag and drop client to File
Manager. It’s just a matter of know-
ing which units to add to the Uses
clause, and what functions to call.
All you need to do is:
➣ Add SHELLAPI to the Uses clause

of the unit,
➣ Call the DragAcceptFiles API

function to tell File Manager
that your application will
accept files dropped on it,

➣ Write code to process the
dropped files.

In ShellAPI are held various
function declarations for interfac-
ing with File Manager. Somewhere
early on you will need to call
DragAcceptFiles(handle, true)
with the parameters set as shown.
The first parameter is the handle to
the form and the second parameter

is a flag to tell File Manager that the
application will accept dropped
files. If your application takes some
time processing a dropped file, you
may need to call this function with
the flag set to false to stop files
being dropped. When the process-
ing has finished and you are ready
to accept more files you can then
set it to true.

Your application must also catch
the Windows WM_DROPFILES mes-
sage. A Windows message is a
record structure that contains
fields which hold information
about the message. The fields most
used are wParam (for “word parame-
ter”) which is 16 bits and lParam
(for “long parameter”) which is 32
bits.

If you declare the message with
one of the newer record types
defined by Microsoft, you can also
get at the information in the mes-
sage more easily by using fields
with specific names and types.
These specific record types are
defined by Delphi with appropriate
names. For example, when the
WM_SYSCOMMAND message is received
the lParam holds the coordinates of
the cursor if the system menu was
chosen using the mouse. Using the
Delphi TWMSysCommand message the
x and y coordinates can be referred
to by the names XPos and YPos. One
small note of caution: the Windows
WM_SYSCOMMAND message names the
wParam parameter as wCmdType,
while Delphi names it CmdType
(without the “w”). Refer to the
Component Writer’s Help for details
of the messages.

To declare a message-handling
method, you must declare a proce-
dure in a protected part of the
component’s class definition. The
convention for naming such a
message handler is to give it a

name after the message that it
handles but without any underline
characters. Following this conven-
tion we add a line similar to the
following to the private section in
the form’s class declaration:

procedure wmDropFiles(var
 Message : TMessage);
 message WM_DROPFILES;

Now whenever the form receives a
WM_DROPFILES message it will call its
wmDropFiles method. The single
parameter of type TMessage
contains the details of the mes-
sage. The code in the wmDropFiles
method will need to handle the
applicable fields in this structure.

Note that the TMessage type pro-
vides a general message structure.
When you use the fields in this
message structure you will prob-
ably need to cast them to the
specific type that your application
requires. Alternatively, if available
you can use one of the special
message types, as done for the
WM_SYSCOMMAND message discussed
below. Note that the declarations
for the standard Windows mes-
sages are held in the Messages unit
which is automatically added to
the Uses clause of a new form.

The code in the wmDropFiles
method must first find the number
of files that have been dropped. To
do this call the DragQueryFile API
function as follows:

iNumberDropped :=
 DragQueryFile(
 THandle(message.wParam),
 $FFFF, NIL, 0);

The first parameter is the handle to
the memory block that is set up by
File Manager to contain the list of
files (including paths) that were

July 1995 The Delphi Magazine 27

selected by the user. This handle is
held in the wParam field of the
message and must be cast to type
THandle.

The second parameter holds
either the (zero based) file number
to retrieve or the hex value $FFFF;
if the latter is used the function will
return the total number of files that
were dropped and in this case the
third parameter is NIL and the
fourth parameter is 0.

Once you have the number of
files that were dropped you can
then process each file in turn. Use
DragQueryFile again but this time to
get a file name:

DragQueryFile(
 THandle(message.wParam), II,
 @szPathName, maxPathSize);

The first parameter is again the
handle. The second parameter now
indicates which file number to
retrieve. The third parameter
points to a buffer where the file
name should be copied, and the
fourth parameter gives the size of
this buffer. Because the Windows
API uses C-style strings, the file
name and the buffer size must
allow for the NULL terminating
character. If needed you can also
use DragQueryFile to supply the
size of the path name (do a search
for DragQueryFile in the Delphi
on-line help). DragQueryPoint will
give you the coordinates of the
point at which the files were
dropped, so you could perform
different actions dependent upon
where the user released the left
mouse button.

Once you have the path name
you can change it to a Pascal type
string using the StrPas function:

szPathName :=
 strPas(@szPathName);

You can then process each file as
required. If the processing takes
time you may wish to temporarily
stop the user dropping further files
by issuing the call

DragAcceptFiles(handle, false).

Finally, to free the block of memory
containing the selected file names

call DragFinish:

DragFinish(
 THandle(message.wParam));

with the handle to the memory
block as the only parameter. If you
don’t free the memory every drag
operation will take a new slice of
memory, and this will only be freed
when File Manager is closed.

A Simple Example
Presented in Figure 1 is a noddy
little application called SA-DDD
(for Software Advantage Drag Drop
Delete: if Microsoft and the other
big boys push their names then
why not the rest of us!). By the way,
don’t read the name of the applica-
tion as sad, it’s the basis for a
useful application not a sad
application!

All that SA-DDD does is display
the name of any file that is dropped
on it. A single line change will
enable it to delete a file that is
dropped on it. (As you can imagine,
during testing the latter functional-
ity is a real pain since File Manager
has got to be kept topped up with
garbage files for deleting – hence
the trivial message box reporting
the name of the dropped file. You
can replace this with your own
code.)

The application is started as an
icon since no interactive

functionality is required and it also
takes less space on the screen.

The properties for the form are
set as follows:
 biMaximize false
 BorderStyle bsSingle
 WindowState wsMinimized

You can also add your own icon
and labels to the form. Use
Options|Project|Application to set
your run-time icon.

Referring to the code on the free
disk with this issue, the first thing
to notice is that the ShellAPI unit is
added to the Uses clause: this unit
contains the declarations for the
functions needed to interact with
File Manager. Next, in the private
declarations section of the
TfrmDragPrint class are declared
two procedures:

procedure wmDropFiles(
 var Message : TMessage);
 message WM_DROPFILES;
procedure wmSysCommand(
 var Message : TWMSysCommand);
 message WM_SYSCOMMAND;

If you need to be able to derive a
new class from TfrmDragPrint you
may want to place these two decla-
rations in a protected part of the
class declaration.

The first method is used to proc-
ess the WM_DROPFILES messages: the
message is passed in the variable
Message which is of the general

➤ Figure 1

Top right:
the SA-DDD
icon which
remains
on top of
all other
windows,
waiting for
files to be
dropped
onto it.

Top left:
modified
system menu.

Bottom:
About box.

28 The Delphi Magazine Issue 2

message type TMessage; thus the
message fields may need to be cast
to the appropriate type before use.

The second method is used
to process the WM_SYSCOMMAND
messages, but this time the
message is of type TWMSysCommand so
the names and types of the
message fields should be more
directly relevant.

The FormCreate method first
checks that no more than one
instance of the application is
running. If hPrevInst is not zero
then you know that there is already
an instance of the application
running, in which case you can
terminate the current instance.

Next, the characteristics of the
form are set with a call to the
SetCharacteristics procedure. If
you are like me then you will work
most of the time with File Manager
maximized. Consequently, when
you click on a file in File Manager
you will lose any other window that
was visible. To get around this you
can make the form stay on top by
calling SetWindowPos with the sec-
ond parameter set to HWND_TOPMOST.
The form will then keep its topmost
position even when another appli-
cation has focus. (This can create
a small problem if the form is not
iconized when you drag a file onto
it. The message box will be under-
neath the form and will be difficult
for the user to get at! In this circum-
stance you could make your form
invisible or make the message box
stay on top.)

Rather than create a menu on the
form I decided that the system
menu would be sufficient with
some small changes. Via a handle
to the system menu the Size and
Maximize items are removed and
the wording of the Restore item is
set to About; the API calls needed to
do this are DeleteMenu, ModifyMenu
and InsertMenu. This permits the
form to be used as an About box –
you could use it to set options if
you prefer. If you need to restore
the system menu to its original con-
tents you can call GetSystemMenu
with the second parameter set to
true. If you want to add your own
items to the system menu ensure
that you use id numbers for your
commands with values less than

$F000; if you don’t then your
commands could conflict with
Windows’ own id numbers. The
value of CmdType when the
WM_SYSCOMMAND message is received
tells you what menu item was
selected.

If you need to make use of the
default handling of messages then
call Inherited. This will cause the
default handling to take place by
calling the original method (in this
case the one with the same mes-
sage index). I have used this simple
technique in the wmSysCommand
method (I noticed that under
normal circumstances after
minimising the About box the icon
lost its topmost attribute and the
system menu reverted to the origi-
nal – clearly Delphi is up to no good
here, or perhaps it’s by design!).

In the wmSysCommand method the
Message parameter is of type
TWMSysCommand. Instead of using
wParam and possibly casting to the
type you require, you can refer to
the fields directly. When the
WM_SYSCOMMAND message is received
with CmdType equal to SC_ICON the
CloseWindow API function is used to
iconize the application rather rely
on the default. Be sure to use
Inherited on commands that you
are not processing otherwise you
will disable all other commands on
the system menu.

Finally, in the wmDropFiles
method the processing of the
dropped files takes place. Not a lot
can be said here that isn’t obvious:
the method just loops over all the
files that were dropped and
presents their names in a message
box. To do more, I suggest that you
replace the message box with a call
to a function that does all the work.

Other Ideas
By hooking into the message loop
you can create some very useful
things. For example, you may wish
to:
➣ Develop a drag and delete appli-

cation with animation. Hint: you
will need a timer and several
icons showing slightly different
positions. To do this and make
your application a source for
drag and drop operations see:
Drop Everything: How to Make

Your Application Accept and
Source Drag-and-Drop Files by
J Richter, Microsoft Systems
Journal, June 1992.

➣ Develop an application that will
accept text files and show them
in a read only mode without the
cursor, and as the user presses
the arrow keys the screen
scrolls – a bit like reading a
Windows help file. You could
also implement screen scrolling
using mouse movement
perhaps with a mouse button or
a key pressed at the same time.

➣ Develop an application that will
permit a text file to be dropped
on an icon and printed. This
would be very useful for readme
files – much simpler than open-
ing Notepad or Write. This
could be built with the text
reader mentioned above.
Default mode (read or print)
could be stored in an INI file, the
contents of which could be set
using a dialog in place of or in
addition to an about box.

If you have no need for the icon to
be anything other than an icon you
can trap the WM_QUERYOPEN message
and override its normal handling.
One technique is to have a method
called QueryOpen that is called when
your application receives the
WM_QUERYOPEN message. This
method need do no more than just
exist: it doesn’t need to do any-
thing. By trapping the WM_QUERYOPEN
message it will stop the default
handler being used.

As a time-served VB developer, I
was surprised to find this project
so easy. To do this sort of thing
with VB you would need a VBX
kludge. Without a doubt, the
designers of Delphi have given
application developers an incred-
ible degree of flexibility without
needing to write clever code. I’m
now off to write a Delphi applica-
tion that will help me to win the
British National Lottery...

Stuart Lunn can be contacted at
100031.215@compuserve.com by
email. The complete source files
for the application discussed in
this article are of course on the
free disk with this issue.

July 1995 The Delphi Magazine 29

Chris Frizelle

	A Simple Example
	Other Ideas

